
Written by John Halvorsen-Jones

You don’t know what
you don’t know.
The Tell-all Guide for Software Product Inventors

Introduction

Software can make you, but software can also
break you.

Whilst much comedy has been made of former
US Secretary of Defense Donald Rumsfeld’s
2002 response to a question on the Iraq war,
his words are nonetheless poignant to software
development.

Having spent over 16 years running my own
software development agency, prior to it being
acquired by Putti, I’ve seen many situations
play out from near and afar, and I am more
convinced than ever that it’s this final category
that leads to product failures.

And that bothers me, because there are a lot
of highly creative and innovative people
coming up with awesome new software and
app ideas, but I know from experience that
many will end up torpedoed by the things their
inventors didn’t know that they didn’t know.

That is why I have written this eBook; to
demystify software product development for
non-developers, suggest some key questions
for people to ask, and help people understand
something of the answers. Then also to offer
some insights into the broader software
product journey.

Please feel free to contact me with feedback
or questions at john@puttiapps.com and to
connect with me on LinkedIn:
https://www.linkedin.com/in/john-halvorsen-
jones

“There are known knowns.
These are things we know that
we know. There are known
unknowns. That is to say,
there are things that we know
we don't know. But there are
also unknown unknowns.
There are things we don't
know we don't know."
- Donald Rumsfeld

2

3

New
Product
Validation
If we’re honest with ourselves, we’ll recognise
that we have a tendency to fall in love with our
own ideas and that, if we’re not careful, this can
lead us to skipping or minimizing this vital first
step.

This step is what’s typically referred to as
‘market validation’, however some products are
purely in-house; invented within an
organization to improve efficiency, create a
unique customer experience, or in some other
way deliver a sector leading advantage.

Whether an in-house product, or an external
product intended to be sold to others, the first
thing we don’t usually know is what else exists
in the world. We also don’t entirely know what
people need and what they’ll pay for it.

So, here’s a quick checklist you can run through
before going further:

 What is the problem my product solves1.
 Have I searched globally for something that
could do the same job?

2.

 If there are competitors in any form, have I
analyzed their relative strengths,
weaknesses and price points?

3.

Do I clearly know what unfilled niche my
product fills?
If in-house, what cost-savings and/or
revenue increases could my product
deliver to the business over three, five and
ten years?
If external, are there relevant examples
that I can draw on to provide an initial idea
of what people would pay for my product
and how big the market is for it?
If an external product, is there a way I can
test market the product to gauge response
and run pricing experiments before
building it?

4.

5.

6.

7.

This last point may involve things like setting up
marketing funnels and capturing expressions of
interest before creating anything, however in
many situations you may still need to build an
MVP (Minimum Viable Product), in order to
effectively test a market. This will be covered
further in the ‘MVP and roadmap’ chapter.

4

New Product Validation

A great way to focus your thinking in the
validation stage is to start by filling out a simple
canvas; either a Lean Canvas for a start-up or,
for in-house, some form of Product Canvas.

Also consider reading the classic market
validation book, “If You Build It, Will They
Come?”, by Rob Adams. This will take you
through a deep dive into practical strategies
and tools you can use to minimize your chance
of a new product failing to meet the market.

Perhaps the most important aspect of market
validation is keeping an open mind, and actually
being prepared to give up on your idea. After
all, it's better to give up on it before you spend
a lot of money building it than it is afterwards.
Don’t think of this in terms of being a quitter,
but rather as wisely saving your resources to
use for a better idea.

5

DIY
Product
Design
Many people come to software development
agencies with pretty much just an idea, which is
totally fine if they’re happy to pay for the
agency’s expertise in helping them to develop
it, however they could also choose to save a lot
of money by investing in a pencil and paper
first.

I mean, if I had a software or app idea, I’d start
by sketching out:

The screens it will have
The content of those screens
The flow between screens
Notes about things that need to happen
that aren’t obvious from the screen designs
Any obvious TXT or email notifications
required as part of the process

Doing this would also be likely to uncover any
conceptual issues that need to be thought
through further.

There are lots of great prototyping tools that
could be used to make this look pretty, such as
UX Pin (pretty easy) and Figma (a bit more pro),
but how far one goes with DIY is a matter of
choice; a pencil and paper, or whiteboard with
image capture, is sufficient to develop ideas
and convey them to someone else.

Whatever process you come up with, the main
point here is that there’s quite a bit you can do
to develop your idea before putting it in front of
a software professional, and doing so will
enable that person to provide meaningful early
feedback, perhaps even some ballpark
estimates.

Besides, designing your product is usually the
most fun and creative part of the journey, so I
don’t personally see this as onerous.

6

Choosing a
Build Partner

This is where things get scary. I mean, there’s
just so much that can, and often does, go
wrong. Even worse, in some cases you may
not know it has gone wrong for years.

Perhaps the best way I can illustrate this is to
tell a true story. Once upon a time in the land
of Tāmaki Makaurau, Aotearoa (AKA
Auckland, New Zealand), there was a very
forward thinking agency in a specialist area
of marketing.

As part of their dedication to providing a
world class experience they hired a software
developer to help them create a piece of
software uniquely fitted to the complex
ongoing interaction between them and their
clients. They had enough understanding of
software to ensure that the technologies
their developer chose were good choices at
the time. The software got built, and refined,
and it worked. Success!!! Well, sort of.

After a couple of years their software
developer moved on and this roughly
coincided with plans by the business to spin
their product off as a SaaS startup. They put
a heap of work into setting up website
onboarding and so forth, and started to take
on a few software subscription customers.

7

Choosing a Build Partner

They also came to me to talk about getting further work done on
the product.

It was this that led us to discover that, under the hood, the
software was a bit of a pile of crap; not really suited to taking
much further without a complete rebuild. Long story short, there
was a lot of repetition where there should have been elegant
reuse of functionality, so every time you made certain changes
they had to be made in multiple places, without missing any. Well,
that was the main issue anyway, but it just wasn’t well written for
maintainability or scalability in general, two important factors if it
was to move from being an in-house product to a commercial
SaaS package.

This definitely wasn’t the worst software we’d been asked to take
over, but it illustrates something many people aren’t aware of.
Most people think that if software looks good, and works, then it
is good. However there are numerous ways in which this
assumption can prove to be false.

With that as some context around the importance of getting the
right build partner(s), let’s broadly consider the options:

Local software development agency
Offshore software development agency
Hiring one or more developers
Finding a developer friend or graduate to build
Contracting a one-man band

I’m naturally biased towards the first of these, but I’ll try to present
a balanced view of the pro’s and con’s of each.

8

Choosing a Build Partner

Local Software
Development
Agency

Offshore Software
Development
Agency

In terms of hourly rate, this will be your most
expensive option. However, if they have a
proven history it will also be the most likely to
produce a professional result that will succeed.

Key advantages include the benefit of multiple
team members with different specialist
skillsets, well developed processes and
sometimes significant IP they can bring to bear;
where they have contributing IP an agency may
not even prove to be the most expensive
option.

A well-established agency also provides
continuity if staff members change over time,
both due to the wider team and because they
have experience in the esoteric art of hiring
good developers.

By “offshore” people usually mean developing
countries with low wage costs.

Theoretically these could provide most of the
advantages of a local software development
agency, but at a much lower price. In terms of
our experience though, this would be a very
rare outcome. What we have seen, through
people bringing projects to us to review or take
over, is a range from practically a scam to just
poorly executed work.

With only one exception, we have never been
able to take over projects that we’ve been
asked to that originated offshore because the
coding quality has always been so low as to be
pretty much unmaintainable.

Offshore development can work well, but
usually in the context of large projects that
have local Product Owners, Architects and
CTO’s providing very clear technical
specifications and a great deal of oversight.

9

Choosing a Build Partner

Hiring One or
More Developers

Finding a
Developer Friend
or Graduate to
Build

Most of us probably wouldn’t be confident to
hire and manage astronauts, but with
developers many people with no experience
seem quite willing to just give it a go, even
though the hiring expertise required is nearly as
specialized.

How can you tell if they’re good? What
motivates them? How can you ensure they
make good decisions? Hiring an in-house team
is usually the right thing to do when a new
software product becomes a market success,
and you’re in a position to hire the right people
to hire and oversee them, but until then there’s
a good reason why many businesses who
could, don’t. When you are ready though,
building an in-house team has the potential to
increase the output and focus of your
development spend.

Thinking ahead from the outset though, when
starting with an agency it could be a great idea
to ask them what their policy is if, in future, you
were ever to request to transition key people
working on your project to an in-house team.

One of our clients was very successful in
getting an excellent developer friend to build
the first iterations of their software in return
for shares in their startup, but they’re the
only person I’ve ever known this approach
to work for.

I really don’t know what the following quote
was referring to, but it feels very relevant to
what we’ve seen of this situation.

“Along the way, in their attempt to make their
dream come true, many ultimately prefer to stay
on the sideline. In the meantime, their packages
of good intentions start leaking, or their letters
of hope remain silenced by unawareness."
- Erik Pevernagie

10

Choosing a Build Partner

Contracting a
One-Man Band

In the music world a one-man band could be
Ed Sheeran or your local drunk busking for his
next whiskey and cola. It’s much the same with
software developers, with the main difference
being that it’s harder to tell which is which.

This is also broadly similar to the ‘finding a
developer friend’ scenario, but with the
implication that you’re paying them, which
may help but is no guarantee the outcome
will be any different.

OK, I admit, I’m clearly pretty biased towards
agencies, but not without long experience
to inform that bias.

11

12

Te
ch

no
logy Choices

Technology Choices

In the majority of software builds the
technology used is a direct consequence of the
build partners selected. Most build partners will
have a preferred tech stack, or maybe two to
choose from. They will tell you why what they
offer is absolutely the best choice for your
project, but is it, or is it just what they know?

There are often multiple options that are all fit
for purpose, however there can be cases
where a tech choice is made that’s ultimately ill
suited to the product, or just hard to find talent
for down the track.

It’s important to be sure that all programming
languages, frameworks and database
technologies your development partner intends
to use meet the following criteria:

Very commonly used across the industry
Has been around long enough to be well
proven
Has a very high chance of being well
supported into the future (which they
probably will if the points above are true)
Is known to scale effectively
Does not undermine creating a secure
application
Are a good choice for developer
productivity
Are efficient in their use of compute and
database resources

Depending on your level of technical
awareness, you may be able to assess what’s
being pitched to you against these criteria, but
if not it would be ideal to find an independent
software specialist who can provide an
unbiased opinion.

13

Technology Choices

As a quick reference though, here’s some very
common technologies that fit these criteria.
(But feel free to skip ahead if this just looks like
monkeys typing)

Common PHP frameworks, Laravel
being the most ubiquitous
Server-side JavaScript (Node.js,
Nest.js)
Microsoft .Net (though “resource
efficient” isn’t its greatest strength)
JavaScript front-end frameworks,
the best probably being React.js,
Next.js and Vue.js
Various component libraries based
on above

MySQL
Microsoft SQL
Postgres
MongoDB
AWS DynamoDB

React Native
Flutter
Native iOS (Swift) and Android
(Java/Kotlin)
Progressive Web Apps (PWA’s)

Web Apps

Database

Mobile Apps

14

Technology Choices

This isn’t a definitive list, but it might enable
you to tick-off certain technologies commonly
put forward.

However of equal or greater importance is
HOW they are used; in particular my three S’s
of Security, Scalability and Serviceability -
serviceability being how easy or otherwise it is
to maintain, update and add on to an
application.

Ultimately you either need to clearly know why
you can trust your vendor's advice, or to get
some oversight from an independent expert.

15

16

In
te

grating AI’s

There are many spectacular
pieces of functionality that once
would have been technically
infeasible or cost prohibitive to
create, that can now be rapidly
and integrated into custom
software projects for relatively
little cost.

Here are some examples:

Integrating AI’s

Chatbots that can provide context specific
help to users via a chat session, as well as
assisting users with relevant content and
insights as required. These work much like
ChatGPT or Claude, and in fact are often
powered by the technologies behind those, just
with subject specific training applied to a
private model.

Speech recognition capability. This has now
reached a fairly conversational level and no
longer requires the tedious training of old
speech recognition systems.

Smart Search that understands user’s queries,
including context, and meaningful inferences
around intent, in order to provide highly
relevant search results from a website,
application or other content source.

Image generation tools that assist users with
visual content creation within relevant areas of
your software.

Data analysis tools that enable users to gain
insights from data that resides within the
software they’re integrated into.

Predictive Analytics that leverage AI
algorithms to analyze historical data, identify
patterns, and make predictions.

Intelligent Automation where AI enables
software to automate repetitive tasks, making
them more efficient and error-free.

Image and Video Recognition enabling
software to analyze and recognize objects,
people, and scenes within images and videos.

Personalization that enables software to
deliver personalized experiences by analyzing
user behavior, preferences, and historical data.

Sentiment Analysis tools that determine the
sentiment behind user interactions.

Anomaly Detection that can detect unusual
patterns or anomalies within data, allowing
software to identify potential fraud, network
intrusions, system failures, or abnormal user
behavior.

The integration of this kind of functionality is
usually handled by passing data from your
mobile app or web application to an API that is
provided by the AI you are making use of, and
then receiving responses back from that.

By way of explanation, an API, or Application
Programming Interface, is a standard data
gateway that provides structured data services
to other applications online. Often these will
come with some form of usage cost so, whilst
they provide incredible functionality for
relatively little development work, you will need
to ensure that you understand the cost
implications, especially if your application is
designed to scale to large usage.

17

Un
de

rs
ta

ndi
ng Requirem

ents

User

18

Understanding User Requirements

A common mistake in the software world is
developers building what the customer asked
for. The other common mistake is not building
what the customer asked for.

The thing to appreciate is that end users do
understand their own needs and problems and,
for better or worse, often have ideas about
what to build to meet them, but their
experience around translating business
requirements into a software product is usually
limited.

What compounds the issue even more is that,
within an organization, people don’t always
have the same view as to the details of how
things should be done. And it’s common for
people to forget to mention the exceptions, or
“edge cases”, and these can often prove one of
the most challenging aspects to deal with when
designing software. A common phrase we hear,
that always proves to be untrue, is that “it’s
really all very simple”.

So this is a challenging area, however here are
some tools and approaches that are helpful.

19

Understanding User Requirements

This is a highly user-centric approach to
understanding needs and requirements. It’s
worth reading Anthony W Ulwick’s book, “Jobs
To Be Done”, however the core technique is
easy to explain. Essentially, what it
recommends is setting up long-form one-on-
one interviews with people who represent
different user roles and then really digging into
their working lives; their needs, workplace
pressures, physical working environment, how
things tend to happen in reality, what they find
frustrating or encouraging, their view on
requirements and the exceptions (edge cases).
It is recommended to capture all this on video,
both so the interviewer can focus on the
interview process and also to enable it to be
mined for in-depth notes later.

The main point of Jobs To Be Done is gaining a
deep understanding of users' needs, business
processes and the environment in which work
occurs, in order to discover, clarify and
prioritize requirements.

20

Jobs to Be Done
Framework

Understanding User Requirements

At the heart of agile software development is
the concept that nobody really knows what the
organization needs, not even the people who
will be using the software; at least, not until
they start playing with something, then they
can usually provide some useful feedback.

A highly agile approach would be just to get a
bare bones idea of what the users needed, an
appropriate flow of key events and some
examples of the kind of information involved.
Then a developer would stitch together an
initial idea for an application from which to
obtain rounds of feedback. The project would
run in iterative loops with lots of feedback from
all the relative parties, until the product of
everyone’s input came into view.

It’s a great way of solving a problem that has
tended to plague large organisations, which is
that of people, including professional Business
Analysts, working hard to correctly specify a
large project, only for it to be a complete flop
when real users try using it.

However, the problem with a fully agile
approach is that it can get very expensive.
Software development is most cost effective
when built in a linear manner against a clear
and highly detailed set of requirements. The
best way to resolve this dilemma is usually
to take a very agile approach to developing
prototypes, and gaining feedback on those,
until there is clarity on what the product
should be, at which point the eventual
software can be built out efficiently.

Agile has also spawned a whole set of
methodologies around controlling time, cost,
feature prioritization and quality. Almost all
projects now incorporate some or all of these
methodologies. What does need to be
assessed on a case-by-case basis though is
the balance between up-front specifying and
iterative changes based on reviews
along the way.

21

Agile Software
Development

Understanding User Requirements

Prototyping is a critical step in the software
development process that involves creating
preliminary versions of a product to test and
refine ideas before full development. Various
approaches to prototyping help product
owners, designers and developers explore
different aspects of a product’s functionality,
usability, and design. Here are some common
approaches:

Paper Prototypes: This involves sketching
interface elements on paper or a whiteboard.
This is very useful for early-stage
brainstorming as it enables ideas to flow
without the need for technical development.

Wireframes: Wireframes are usually neater and
more detailed than paper prototypes and
provide a skeletal framework of the software’s
interface. They focus on layout, content
placement, and navigation without detailed
visual design.

Interactive Prototypes: These prototypes
simulate user interactions and workflows
using digital tools. They range from low-
fidelity (clickable wireframes) to high-fidelity
(fully interactive models with realistic design
elements). Tools such as Figma, InVision, and
UX Pin allow designers to create interactive
prototypes that provide a more accurate
sense of how the final product will function.

High-Fidelity Prototypes: High-fidelity
prototypes closely resemble the final
product in terms of design and functionality.
They include detailed visual elements,
realistic content, and complex interactions.
These prototypes are often used for usability
testing to assess user experience with a
more polished representation of the product.

Wizard-of-Oz Prototypes: This approach
involves simulating functionality manually,
often using a combination of human
operators and rudimentary software
interfaces. For instance, users may interact
with a seemingly automated system that is
actually controlled by a person behind the
scenes. This can be a great approach for
initial market validation or user testing.

Each of these approaches has a different
time-benefit trade off, and the suitability of
each can also come down to the size,
complexity and stage of the project.

22

Prototyping

23

U s e r E x p erie
nc

e

User Experience

Since the earliest computers the shift that’s
been occurring in human-computer interaction
is that of progressively moving from humans
having to adapt their interaction to the
workings of computers, to computers being
adapted to the needs of humans.

Arguably the greatest leap-forward in this
progression was the advent of the Graphical
User Interface (GUI), first commercialized by
Apple and later by Microsoft as Windows.
Other significant steps forward have included
touch-screen devices and, from a very
different angle, AI’s becoming mainstream.

The science of UX encompasses all aspects of
end-users’ interaction with a product and its
goal is to make that interaction as intuitive,
seamless and enjoyable as possible.

A seminal concept in the evolution of UX
thinking was, “Don’t make me think”, an idea
introduced by Steve Krug’s book of the same
name. As the awareness of UX has continued
to develop, the following principles have
become commonly recognised:

User-Centered Design: Focus on
understanding and addressing the needs,
preferences, and behaviors of the target users
throughout the design process. This includes
using terminology familiar to the target
audience, rather than jargon or acronyms that
may not be.

Usability: Ensure the software is easy to use,
with intuitive navigation and clear,
understandable functionality.

Consistency: Maintain uniformity in design
elements, interactions, and terminology to
help users build familiarity and reduce learning
curves.

24

User Experience

Visual Hierarchy: Use layout, color,
typography, and spacing effectively to
prioritize and organize content, guiding users’
attention to important elements.

Flexibility and Customization: Allow users to
adjust settings and preferences to fit their
individual needs and work styles, though there
can be a balance between this and
overcomplicating a product.

Performance: Ensure the software is
responsive and performs well under various
conditions, providing a smooth and reliable
user experience.

Emotional Design: Consider the emotional
impact of the visual design, creating a positive
and engaging experience that resonates with
users on an emotional level.
User Testing: Continuously test with real users
to gather feedback and validate design
decisions, making iterative improvements
based on this input.

25

Accessibility: Design to accommodate a wide
range of users, including those with disabilities
as much as possible. Examples can include
screen reader friendly pages, ability for the
user to enlarge font size, text-to-speech
functions and so forth.

Feedback: Provide timely and clear feedback
for user actions to help users understand the
results of their interactions and guide them
through tasks.

Efficiency: Optimize workflows and minimize
the number of steps required to complete
tasks, making interactions as efficient as
possible.

Memory: Avoid ever requiring the user to
remember something; for instance, if you show
a phone number, including an easy control
activate phoning it is better than the user
having to try and remember or copy the
number into the phone app. Likewise, people
should be able to access information known
within an application when required to enter it
somewhere else.

Error Prevention and Recovery: Design to
minimize the likelihood of errors and provide
helpful error messages and recovery options
when mistakes occur.

26

Th e P r o d u ct O
w

ne
r

Th
e R

ole of

The Role of the Product Owner

The Product Owner role is typically very key
to a successful software project. In an agency
situation this role may end up split between
people within the client’s organisation and
agency staff, and the role names may
therefore be different, however it’s important
that all areas of responsibility are covered.

Whether collectively, or encapsulated in the
Product Owner role, the main responsibilities
in view here are to:

Own the vision developed with
stakeholders
Assist with product strategy
Act as a liaison between the business, the
developers & other vendors
Deeply understand the needs of users
Translate business processes into
technical requirements
Proactively manage the project and report
on progress
Identify and manage risks
Control project budgets
Manage project documentation
Own UAT (User Acceptance Testing)
Define roll-out and support requirements
Continuously research, gain feedback on
and prioritize the roadmap
Monitor and report on ongoing costs

Where there is no formal Product Owner in
place it is important to at least map out who
will be across each of these functions, and
ensure there is still a central person in the
project who will be proactively holding all the
pieces together; a project manager or similar.
Also bear in mind that some agencies offer a
Virtual Product Owner service, so it may at
times be possible to get the complete role
without having to hire a permanent full-time
person.

Let’s consider some of the common pitfalls of
software projects and how the Product
Owner fulfilling their role well can mitigate
them.

27

The Role of the Product Owner

The responsibility for ensuring end products
are fit for purpose sits squarely with the
Product Owner as they are the bridge between
the intended users and the developers.

They must deeply understand the users needs
and the business processes that need to be
fulfilled. They must also be able to translate
these into clear feature specifications for the
development team and provide meaningful
feedback as features take shape. If the Product
Owner has any lack of clarity around either the
requirements side or what’s actually being built,
this introduces significant risk of the eventual
product not being fit for purpose.

28

End Product is not
Fit for Purpose

Common Pitfalls of
Software Projects

The Role of the Product Owner Common Pitfalls of Software Projects

Although time & budget overrun may well
originate in the development team, the
Product Owner plays a critical role in moni-
toring budget, reporting back to stakeholders
and working through options where the budget
is going off-track. Options may include simpli-
fying the project, accepting that areas of it
require more time than expected or solving
problems, including any team problems if that
is having an impact.

It is the product owner that needs to set up
appropriate project management processes
that provide visibility on project stages,
features, feature completion and overall
estimates of completeness for both the team
and stakeholders. Again, the Product Owner’s
depth of understanding of both the require-
ments and implementation will greatly affect
their ability to provide quality oversight.

A Product Owner is not usually a
Software Architect, however they need to be
experienced enough in the software develop-
ment industry to have meaningful conver-
sations with software agencies, architects and
the like. It’s important that they grasp the
implications of different tech stack and
architectural decisions, at least sufficiently
to liaise with stakeholders and ensure that
stakeholders need will be well matched to
technical decisions being made. Otherwise,
a project may run for years, only to end up in a
cul-de-sac of scalability, security, maintain-
ability or extensibility problems.

29

Time and Budget
Overrun

Poor technical
decisions lead
to a software
cul-de-sac

The Role of the Product Owner Common Pitfalls of Software Projects

Whilst again a Product Owner is not expected
to be a UX specialist, they really do need a
good working understanding of the field to
contribute to UX decisions as they arise. As
with software Architects, the Product Manager
needs to be an effective bridge; able to select
and converse meaningfully with specialists,
and to translate between specialists and
stakeholders.

30

User Experience is
Poor

31

M

V P a n d R oad
m

ap

MVP and Roadmap

The term MVP, or Minimum Viable Product,
refers to an initial version of a new product
that includes only the essential features
necessary to meet the needs of early
adopters and validates the product's core
value proposition. The primary goal of an MVP
is to test the business hypotheses with real
users, at minimal cost.

The other significant benefit of starting with
an MVP is that any further development is
then informed by user feedback on the live
product. No matter what feedback
mechanisms you employ prior to MVP, there’s
nothing like feedback from real users carrying
out their real work.

A caveat around MVP, put forward by Eric
Ries, author of The Lean Startup, is that your
MVP must still also be valuable to users; he
later coined the term MVVP (Minimum Viable
Valuable Product) to reinforce this point.

In trying to stick to an MVP, one of the
common challenges product owners face is
catching everyone’s ideas and enthusiasm for
new features, without bloating the initial build.
A good way to handle this is to run an ideas
board that’s separate to the MVP feature set,
and then to evaluate those ideas to see which
ones merit being brought over into the
product roadmap.

The product roadmap is the collection of
new features in the pipeline at any point of
development following MVP. Typically
roadmap’s are prioritized and re-prioritised
around business value; a quasi-scientific
assessment of how many people or
operations a feature touches, and the
significance of the value delivered to each.
Roadmaps also usually contain an outline of
the key functionality of each feature and
some degree of estimate around the
resources required to deliver it. Sometimes
very high or low estimates will trump
business value in determining a feature’s
order in the roadmap.

From a psychological point of view, often
just being able to say that something is “on
the roadmap” encourages users to to feel
that their needs have been heard and that
they will, at some stage, receive what
they’ve been asking for, even if you know
that stage is going to be just after hell
freezes over.

32

M
Minimum

The most rudimentary,
bare-bones foundation
of the solution possible

Sufficient enough for
early adopters

Something tangible
customers can
touch and feel

Viable Product
V P

Diagram source: geeksforgeeks.org

W

h a t L i e s B
eyo

nd

33

Re
lea

ses and

Releases and What Lies Beyond

From ages 16 to 19 I trained almost every day
to reach my goal of being a black belt in Karate
and, when I finally got there, I’ll never forget
what was written on my black belt certificate;
“The Beginning”.

When the whole product development journey
culminates in releasing your new product, you
may breathe a sign of relief and feel like it’s all
over and that you can put your feet up. In
reality, especially for successful products,
you’ve only reached the beginning.

Not only will releasing your software to the real
world potentially expose various unforeseen
issues, but it will also invite feedback beyond
the scope of any pre-release user testing.
Listening to feedback, and the needs of people
using your software will be, from that point
onwards, one of the most important drivers of
your product direction.

Another thing that’s important to consider
when planning your post release journey is
the need for ongoing maintenance and code
upgrades. Although sometimes applications
just work day in, day out, with no real
maintenance, there are multiple risks that
come with a lack of ongoing maintenance.
These include:

Performance degradation. Databases in
particular need ongoing optimisation to stay
performant, otherwise they are likely to
become slower and slower as the number of
records builds up.

Server outages. These are more likely to
occur if usage of resources is not monitored
since the server may become overwhelmed in
one or more areas as usage of an application
grows.

Security vulnerabilities becoming exposed.
There may be unknown vulnerabilities in the
many pieces of third-party technology
included in any software and its underlying
tech stack. While they remain unknown the
risk of an exploit is extremely low, however as
soon as they become known bots will typically
start searching for applications with these
vulnerabilities, so the risk of an exploit
grows rapidly.

It is therefore important to patch vulnerabilities
as they become known.

34

Releases and What Lies Beyond

Errors and failures due to code rot. Changes
in the environment (phone operating system,
browser, etc), or underlying tech stack, can
cause your application to start having
problems, even though it hasn’t changed …
actually, because it hasn’t changed in sync
with other developments in technology.
Without proactive updating of the frameworks
and other technology in your application this
one will get you sooner or later, it’s only a
matter of time.

Some of the tasks required to avoid these
pitfalls are ongoing; daily, weekly or monthly
as appropriate, whilst others are large and
irregular, such as upgrading the frameworks in
use. It is ideal to have a maintenance budget
that not only addresses the regular needs, but
is also building up a savings pool to address
the larger needs as they arise.

Also bear in mind that, whilst infrastructure,
maintenance and other running costs may
start off being quite low, as the usage of your
mobile app or web application grows, you’ll
need to allow for the growth of all of these
underlying costs if you want to maintain a
stable and performant product. The good
news is that, even so, software businesses
tend to be far more scalable than bricks and
mortar businesses because scaling doesn’t
usually require the commensurate scaling of
things like office space and people. You may
need more of both of these, but in a software
company these costs usually take up a much
lower portion of your revenue growth.

35

Startup
Funding

36

Startup Funding

In many startup founders' minds, outside
investment has the same allure as winning the
lottery. Funding is hugely important to the
success of most software startup’s, however if
you plan to raise it from professional investors,
angels, VC’s (Venture Capitalists) and the like,
then it is important to have a clear
understanding of:

What is required to get funding
The usual stages of capital raising
The potential pitfalls to watch out for

37

“When you take that money
your life is over”
- Paul Sinclair, OFNZ

Startup Funding

The hardest of these to validate tend to be
pricing and CAC (Customer Acquisition Cost);
so much so that often it’s easier to get to a
point of having some revenue so that you can
run pricing experiments and test marketing in
order to determine them in the real, rather than
theoretical, world.

Whilst some Angels and VC’s will consider
investing in pre-revenue startup’s, the degree
of validation they’re looking for tends to be
nearly as much work as actually doing it for real
(if you’ve already built a working product).

38

Validation, validation, validation. Your product
idea may sound very exciting but, when it
comes down to it, can you validate everything
you’re saying?

Product-market fit
Competence and experience of your team
(which can be augmented by a good dev
partner)
Size of market
Competitor analysis
Pricing
Cost of customer acquisition
Go to market cost
Margin
Likely development costs, including ongoing
maintenance
Other costs, including specialist team
members you’ll need to achieve your goals
A realistic exit plan for investors

Getting Funding

Startup Funding

Pre-Seed Funding

Seed Funding

Series A

39

The pre-seed stage is often referred to as the
"idea stage" at which founders are primarily
working on conceptualizing their product and
determining the viability of their business idea.

Typical funding sources during this stage
include:

Self-funding / bootstrapping
Bank loans
Friends and family
Angel investors (thought these usually
come later)

Usually the amounts involved are between
$50,000 to $500,000 and primarily go towards
building an MVP (Minimum Viable Product,
market research, and legal fees related to
company and shareholder setup.

(cont’d from Seed Funding stage)
Angel Investors
Seed Venture Capital Firms (that specialise
in early stage investment)
Crowdfunding

Usually the amounts involved are between
$500,000 to $2 million. This funding allows
startups to refine their product, expand the
team, develop marketing strategies, and
validate the business model.

The seed stage is where the product moves
beyond the initial prototype or MVP, and the
startup starts gaining traction. Seed funding is
typically used for product development, market
research, hiring early team members, and
building a customer base.

Typical funding sources during this stage
include:

The Series A stage is one of the most critical
milestones for any software startup. At this
point, the startup should have a clear product-
market fit, with customers actively using the
product and a validated business model.

Typical funding sources during this stage
include:

Venture Capital Firms
Corporate Investors (usually where your
product is relevant to their industry)

Usually the amounts involved are between $2
million to $15 million. Series A investments
typically focus on helping startups scale their
operations, refine their products, and expand to
larger markets.

Stages of Capital Raising

Stages of
Capital Raising

Startup Funding

Series B

Series C

Series D and beyond

40

Series B funding is for startups that have
successfully proven their product-market fit
and are now looking to accelerate their growth
and expand their business significantly.
Typical funding sources during this stage
include:

Venture Capital Firms
Private Equity

Usually the amounts involved are between $10
million to $50 million. The money raised during
Series B is typically used for product
refinement, sales and marketing efforts, hiring
additional staff, and expanding into new
markets.

Series C funding is for companies that are
already leaders in their niche market and are
looking to expand globally, acquire other
companies, or develop new product lines. The
goal of Series C is often to prepare for an exit,
such as an IPO (Initial Public Offering) or
acquisition.

Typical funding sources during this stage
include:

Venture Capital Firms (top tier)
Private Equity and Hedge Funds

Usually the amounts involved are between $30
million to $100 million. The funding is generally
used to fuel international expansion, major
marketing campaigns, or large acquisitions that
allow the startup to capture more market share.

While Series C typically marks the final round of
funding before an IPO or acquisition, some
startups may enter Series D, Series E, or even
later stages of funding. These rounds are
usually for startups that are looking to fuel
specific growth initiatives or take advantage of
unforeseen opportunities.

Amounts and funding sources can vary a lot,
though are often similar to Series C.

The use of money raised in later stages can
vary greatly, but is often used for acquisitions,
scaling operations, or preparing for a public
offering.

Stages of Capital Raising

41

It’s well worth attending events that attract
past startup founders and hearing some of the
war stories; every way that people were ripped
off is somewhat unique, however here are the
most common threads to stories I’ve heard.

Pitfalls to
watch out for

Startup Funding

Co-founder / investor problems.

Unscrupulous corporate sharks.

These are probably the most common; often
people’s ideas on where things should be
going diverge along the way and human
elements of greed and desire for control can
also come into play. A great example of this is
the divergency between the original co-
founders of Facebook, Eduardo Saverin and
Mark Zuckerberg, as portrayed in the 2010
film, The Social Network. There is no easy
answer to this; in general terms though it’s
worth considering early partner and
shareholder compatibility with the same
degree of seriousness as contemplating
marriage. Ensuring that you’re dealing with
people who are open, reasonable and
reciprocal is key to being able to resolve the
differences that will arise.

Often it’s very alluring when a large, powerful
corporation takes a keen interest in your
product and tells you all the things they can
do to make it a massive success. These
situations can indeed be great opportunities,
but don’t be naive, no matter what bond you
think you have with the people you are
dealing with, the heart of the beast is that of a
psychopath. Strong words? The point is that
ultimately large corporations will make the
decisions they deem to be in their own best
interest and neither empathy, loyalty or even
supposedly binding contracts will get in the
way of that. Also, the ultimate decision
makers may end up being people you have
never even met. Often your IP, ideas, or
unique knowledge turns out to be more
valuable to a large corporation than whatever
deal you officially entered into.

Pitfalls to watch out for

42

Startup Funding

Overbearing VC’s

Loss of control.

 This comes back to the opening quote of this
section, “when you take the money, your life
is over”. The very nature of the VC business
model is that the successful investments
need to produce returns that more than cover
the unsuccessful investments; it’s a high risk,
high return, environment. This means that, to
minimise chance of failure and maximise
return, VC’s will usually expect a lot from
founders. Also, due in particular to bad
experiences with some founders, VC’s will
usually want a high degree of oversight and
accountability to be in place. The best thing
you can do is to consciously choose whether
or not you want to go down this path and, if
you do, embrace all aspects of it as part and
parcel of your choice. However, it may also be
worthwhile to ask around the startup’s
community to get some insights into the
nature of the particular VC’s available to
approach; just like any company the culture
of VC’s will vary greatly.

As soon as you start taking other people’s
money, some loss of control is inevitable,
and that can be OK if it’s well managed.
However, the problem comes when you end
up diluting your shareholding to the point
where you really don’t have any control; at
that point you are really just a CEO with a
share package, and if you don’t please your
masters you can be fired like any other CEO.
For some opportunities that consume capital
for a long time this may be semi-inevitable;
if it is, just ensure that your competence rises
with the company such that investors want
to keep you and want to listen to what you
have to say.

Pitfalls to watch out for

43

These obviously vary from country to country,
however, in the context of New Zealand, the
main sources relevant to software businesses
are:

R&D tax credit scheme
Callaghan grants and co-funding
NZTE grants and other services

R&D tax credits are especially worth going for
as you pretty much have a right to them as long
as you can make the case that you’re solving
previously unanswered problems. They can
also be applied retrospectively if you have
carefully tracked costs and portions of staff
time used. To prepare a good application
usually requires the help of a consultant
though, so this only tends to be worthwhile for
six-figure projects upwards.

Criteria for other grants and co-funding will
obviously change over time so it’s best that you
obtain fresh information, however in general
they usually seem to require a reasonably
mature operation to obtain. It’s worth noting
too that some of the Angel investor networks
have relationships with Callaghan to obtain co-
funding that adds to the amounts they’re
investing.

Also, when it comes to the various government
and partner organizations that provide funding,
it’s good to think beyond just money itself;
some offer other great services such as
introduction to investors and potential overseas
customers, helpful advice and relevant courses
for product startups. My experience with NZTE
in particular is that it felt a bit like a free
incubator, however to my knowledge they do
only deal with companies that already have
seven-figure revenue.

Where your business meets eligibility criteria
these government sources are great in that
they don’t dilute your shareholding; in most
cases the way to look at it though is not so
much either-or situation, but rather as a
companion to other investment pathways.

Government
Grants and Co-
Funding

Startup Funding Government Grants and Co-Funding

44

Closing
Thoughts

This eBook is only a light overview of the areas
it covers, however I hope it has raised some
things worthy of further consideration.

For anyone fairly new to software development,
I also hope it has enabled you to take stock of
the road ahead; it’s not as easy as media
stories of overnight success, or some fly-by-
night agencies, often portray.

On the other hand, what I hope I haven’t
obscured is that software development is fun!
Yes, if you’re working with the right people it
really is. There’s nothing else I know that
enables you to just dream and create like
software and app development.

And when it does result in a new valuable
product, software is also the most scalable
business known to man. In the context of New
Zealand, the media tends to focus on a few of
the biggest players, but there are a surprising
number of successful SaaS companies that fly
below the radar. One reason they get very little
media attention is that many of them have
created a ‘best in the world’ product within a
narrow niche, but then scaled globally within
that niche to the extent that they’re not actually
very focused on the NZ market.

If you do choose to be a software product
founder, I believe you’re taking a road that will
thrill, challenge and stretch you. I’d encourage
being a student of the process and
appreciating the growth it brings. And I’d also
encourage you to surround yourself with
capable people; the number one reflection
from my journey so far is that successful
technology delivery is all about great people.
Sorry AI’s, you’re just not there yet; maybe one
day, but that day is not today.

As mentioned in the introduction, please do
feel free to reach out to me:
john@puttiapps.com or via
https://www.linkedin.com/in/john-halvorsen-
jones/

45

